How to use Apache Gravitino Virtual File System with Filesets
Introduction
Fileset
is a concept brought in by Apache Gravitino, which is a logical collection of files and
directories, with fileset
you can manage non-tabular data through Gravitino. For
details, you can read How to manage fileset metadata using Gravitino.
To use Fileset
managed by Gravitino, Gravitino provides a virtual file system layer called
the Gravitino Virtual File System (GVFS):
- In Java, it's built on top of the Hadoop Compatible File System(HCFS) interface.
- In Python, it's built on top of the fsspec interface.
GVFS is a virtual layer that manages the files and directories in the fileset through a virtual path, without needing to understand the specific storage details of the fileset. You can access the files or folders as shown below:
gvfs://fileset/${catalog_name}/${schema_name}/${fileset_name}/sub_dir/
In python GVFS, you can also access the files or folders as shown below:
fileset/${catalog_name}/${schema_name}/${fileset_name}/sub_dir/
Here gvfs
is the scheme of the GVFS, fileset
is the root directory of the GVFS which can't
modified, and ${catalog_name}/${schema_name}/${fileset_name}
is the virtual path of the fileset.
You can access the files and folders under this virtual path by concatenating a file or folder
name to the virtual path.
The usage pattern for GVFS is the same as HDFS or S3. GVFS internally manages the path mapping and convert automatically.
1. Managing files of Fileset with Java GVFS
Prerequisites
- A Hadoop environment with HDFS running. GVFS has been tested against Hadoop 3.1.0. It is recommended to use Hadoop 3.1.0 or later, but it should work with Hadoop 2. x. Please create an issue if you find any compatibility issues.
Configuration
Configuration item | Description | Default value | Required | Since version |
---|---|---|---|---|
fs.AbstractFileSystem.gvfs.impl | The Gravitino Virtual File System abstract class, set it to org.apache.gravitino.filesystem.hadoop.Gvfs . | (none) | Yes | 0.5.0 |
fs.gvfs.impl | The Gravitino Virtual File System implementation class, set it to org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem . | (none) | Yes | 0.5.0 |
fs.gvfs.impl.disable.cache | Disable the Gravitino Virtual File System cache in the Hadoop environment. If you need to proxy multi-user operations, please set this value to true and create a separate File System for each user. | false | No | 0.5.0 |
fs.gravitino.server.uri | The Gravitino server URI which GVFS needs to load the fileset metadata. | (none) | Yes | 0.5.0 |
fs.gravitino.client.metalake | The metalake to which the fileset belongs. | (none) | Yes | 0.5.0 |
fs.gravitino.client.authType | The auth type to initialize the Gravitino client to use with the Gravitino Virtual File System. Currently only supports simple , oauth2 and kerberos auth types. | simple | No | 0.5.0 |
fs.gravitino.client.oauth2.serverUri | The auth server URI for the Gravitino client when using oauth2 auth type with the Gravitino Virtual File System. | (none) | Yes if you use oauth2 auth type | 0.5.0 |
fs.gravitino.client.oauth2.credential | The auth credential for the Gravitino client when using oauth2 auth type in the Gravitino Virtual File System. | (none) | Yes if you use oauth2 auth type | 0.5.0 |
fs.gravitino.client.oauth2.path | The auth server path for the Gravitino client when using oauth2 auth type with the Gravitino Virtual File System. Please remove the first slash / from the path, for example oauth/token . | (none) | Yes if you use oauth2 auth type | 0.5.0 |
fs.gravitino.client.oauth2.scope | The auth scope for the Gravitino client when using oauth2 auth type with the Gravitino Virtual File System. | (none) | Yes if you use oauth2 auth type | 0.5.0 |
fs.gravitino.client.kerberos.principal | The auth principal for the Gravitino client when using kerberos auth type with the Gravitino Virtual File System. | (none) | Yes if you use kerberos auth type | 0.5.1 |
fs.gravitino.client.kerberos.keytabFilePath | The auth keytab file path for the Gravitino client when using kerberos auth type in the Gravitino Virtual File System. | (none) | No | 0.5.1 |
fs.gravitino.fileset.cache.maxCapacity | The cache capacity of the Gravitino Virtual File System. | 20 | No | 0.5.0 |
fs.gravitino.fileset.cache.evictionMillsAfterAccess | The value of time that the cache expires after accessing in the Gravitino Virtual File System. The value is in milliseconds . | 3600000 | No | 0.5.0 |
You can configure these properties in two ways:
-
Before obtaining the
FileSystem
in the code, construct aConfiguration
object and set its properties:Configuration conf = new Configuration();
conf.set("fs.AbstractFileSystem.gvfs.impl","org.apache.gravitino.filesystem.hadoop.Gvfs");
conf.set("fs.gvfs.impl","org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem");
conf.set("fs.gravitino.server.uri","http://localhost:8090");
conf.set("fs.gravitino.client.metalake","test_metalake");
Path filesetPath = new Path("gvfs://fileset/test_catalog/test_schema/test_fileset_1");
FileSystem fs = filesetPath.getFileSystem(conf); -
Configure the properties in the
core-site.xml
file of the Hadoop environment:<property>
<name>fs.AbstractFileSystem.gvfs.impl</name>
<value>org.apache.gravitino.filesystem.hadoop.Gvfs</value>
</property>
<property>
<name>fs.gvfs.impl</name>
<value>org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem</value>
</property>
<property>
<name>fs.gravitino.server.uri</name>
<value>http://localhost:8090</value>
</property>
<property>
<name>fs.gravitino.client.metalake</name>
<value>test_metalake</value>
</property>
Usage examples
First make sure to obtain the Gravitino Virtual File System runtime jar, which you can get in two ways:
-
Download from the maven central repository. You can download the runtime jar named
gravitino-filesystem-hadoop3-runtime-{version}.jar
from Maven repository. -
Compile from the source code:
Download or clone the Gravitino source code, and compile it locally using the following command in the Gravitino source code directory:
./gradlew :clients:filesystem-hadoop3-runtime:build -x test
Via Hadoop shell command
You can use the Hadoop shell command to perform operations on the fileset storage. For example:
# 1. Configure the hadoop `core-site.xml` configuration
# You should put the required properties into this file
vi ${HADOOP_HOME}/etc/hadoop/core-site.xml
# 2. Place the GVFS runtime jar into your Hadoop environment
cp gravitino-filesystem-hadoop3-runtime-{version}.jar ${HADOOP_HOME}/share/hadoop/common/lib/
# 3. Complete the Kerberos authentication setup of the Hadoop environment (if necessary).
# You need to ensure that the Kerberos has permission on the HDFS directory.
kinit -kt your_kerberos.keytab your_kerberos@xxx.com
# 4. Try to list the fileset
./${HADOOP_HOME}/bin/hadoop dfs -ls gvfs://fileset/test_catalog/test_schema/test_fileset_1
Via Java code
You can also perform operations on the files or directories managed by fileset through Java code.
Make sure that your code is using the correct Hadoop environment, and that your environment
has the gravitino-filesystem-hadoop3-runtime-{version}.jar
dependency.
For example:
Configuration conf = new Configuration();
conf.set("fs.AbstractFileSystem.gvfs.impl","org.apache.gravitino.filesystem.hadoop.Gvfs");
conf.set("fs.gvfs.impl","org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem");
conf.set("fs.gravitino.server.uri","http://localhost:8090");
conf.set("fs.gravitino.client.metalake","test_metalake");
Path filesetPath = new Path("gvfs://fileset/test_catalog/test_schema/test_fileset_1");
FileSystem fs = filesetPath.getFileSystem(conf);
fs.getFileStatus(filesetPath);
Via Apache Spark
-
Add the GVFS runtime jar to the Spark environment.
You can use
--packages
or--jars
in the Spark submit shell to include the Gravitino Virtual File System runtime jar, like so:./${SPARK_HOME}/bin/spark-submit --packages org.apache.gravitino:filesystem-hadoop3-runtime:${version}
If you want to include the Gravitino Virtual File System runtime jar in your Spark installation, add it to the
${SPARK_HOME}/jars/
folder. -
Configure the Hadoop configuration when submitting the job.
You can configure in the shell command in this way:
--conf spark.hadoop.fs.AbstractFileSystem.gvfs.impl=org.apache.gravitino.filesystem.hadoop.Gvfs
--conf spark.hadoop.fs.gvfs.impl=org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem
--conf spark.hadoop.fs.gravitino.server.uri=${your_gravitino_server_uri}
--conf spark.hadoop.fs.gravitino.client.metalake=${your_gravitino_metalake} -
Perform operations on the fileset storage in your code.
Finally, you can access the fileset storage in your Spark program:
// Scala code
val spark = SparkSession.builder()
.appName("Gvfs Example")
.getOrCreate()
val rdd = spark.sparkContext.textFile("gvfs://fileset/test_catalog/test_schema/test_fileset_1")
rdd.foreach(println)
Via Tensorflow
For Tensorflow to support GVFS, you need to recompile the tensorflow-io module.
-
First, add a patch and recompile tensorflow-io.
You need to add a patch to support GVFS on tensorflow-io. Then you can follow the tutorial to recompile your code and release the tensorflow-io module.
-
Then you need to configure the Hadoop configuration.
You need to configure the Hadoop configuration and add
gravitino-filesystem-hadoop3-runtime-{version}.jar
, and set up the Kerberos environment according to the Use GVFS via Hadoop shell command sections.Then you need to set your environment as follows:
export HADOOP_HOME=${your_hadoop_home}
export HADOOP_CONF_DIR=${your_hadoop_conf_home}
export PATH=$PATH:$HADOOP_HOME/libexec/hadoop-config.sh
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/amd64/server
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export CLASSPATH="$(hadoop classpath --glob)" -
Import tensorflow-io and test.
import tensorflow as tf
import tensorflow_io as tfio
## read a file
print(tf.io.read_file('gvfs://fileset/test_catalog/test_schema/test_fileset_1/test.txt'))
## list directory
print(tf.io.gfile.listdir('gvfs://fileset/test_catalog/test_schema/test_fileset_1/'))
Authentication
Currently, Gravitino Virtual File System supports two kinds of authentication types to access Gravitino server: simple
and oauth2
.
The type of simple
is the default authentication type in Gravitino Virtual File System.
How to use authentication
Using simple
authentication
First, make sure that your Gravitino server is also configured to use the simple
authentication mode.
Then, you can configure the Hadoop configuration like this:
// Simple type uses the environment variable `GRAVITINO_USER` as the client user.
// If the environment variable `GRAVITINO_USER` isn't set,
// the client uses the user of the machine that sends requests.
System.setProperty("GRAVITINO_USER", "test");
Configuration conf = new Configuration();
conf.set("fs.AbstractFileSystem.gvfs.impl","org.apache.gravitino.filesystem.hadoop.Gvfs");
conf.set("fs.gvfs.impl","org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem");
conf.set("fs.gravitino.server.uri","http://localhost:8090");
conf.set("fs.gravitino.client.metalake","test_metalake");
// Configure the auth type to simple,
// or do not configure this configuration, gvfs will use simple type as default.
conf.set("fs.gravitino.client.authType", "simple");
Path filesetPath = new Path("gvfs://fileset/test_catalog/test_schema/test_fileset_1");
FileSystem fs = filesetPath.getFileSystem(conf);
Using OAuth
authentication
If you want to use oauth2
authentication for the Gravitino client in the Gravitino Virtual File System,
please refer to this document to complete the configuration of the Gravitino server and the OAuth server: Security.
Then, you can configure the Hadoop configuration like this:
Configuration conf = new Configuration();
conf.set("fs.AbstractFileSystem.gvfs.impl","org.apache.gravitino.filesystem.hadoop.Gvfs");
conf.set("fs.gvfs.impl","org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem");
conf.set("fs.gravitino.server.uri","http://localhost:8090");
conf.set("fs.gravitino.client.metalake","test_metalake");
// Configure the auth type to oauth2.
conf.set("fs.gravitino.client.authType", "oauth2");
// Configure the OAuth configuration.
conf.set("fs.gravitino.client.oauth2.serverUri", "${your_oauth_server_uri}");
conf.set("fs.gravitino.client.oauth2.credential", "${your_client_credential}");
conf.set("fs.gravitino.client.oauth2.path", "${your_oauth_server_path}");
conf.set("fs.gravitino.client.oauth2.scope", "${your_client_scope}");
Path filesetPath = new Path("gvfs://fileset/test_catalog/test_schema/test_fileset_1");
FileSystem fs = filesetPath.getFileSystem(conf);
Using Kerberos
authentication
If you want to use kerberos
authentication for the Gravitino client in the Gravitino Virtual File System,
please refer to this document to complete the configuration of the Gravitino server: Security.
Then, you can configure the Hadoop configuration like this:
Configuration conf = new Configuration();
conf.set("fs.AbstractFileSystem.gvfs.impl","org.apache.gravitino.filesystem.hadoop.Gvfs");
conf.set("fs.gvfs.impl","org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem");
conf.set("fs.gravitino.server.uri","http://localhost:8090");
conf.set("fs.gravitino.client.metalake","test_metalake");
// Configure the auth type to kerberos.
conf.set("fs.gravitino.client.authType", "kerberos");
// Configure the Kerberos configuration.
conf.set("fs.gravitino.client.kerberos.principal", "${your_kerberos_principal}");
// Optional. You don't need to set the keytab if you use kerberos ticket cache.
conf.set("fs.gravitino.client.kerberos.keytabFilePath", "${your_kerberos_keytab}");
Path filesetPath = new Path("gvfs://fileset/test_catalog/test_schema/test_fileset_1");
FileSystem fs = filesetPath.getFileSystem(conf);
2. Managing files of Fileset with Python GVFS
Prerequisites
- A Hadoop environment with HDFS running. Now we only supports Fileset on HDFS. GVFS in Python has been tested against Hadoop 2.7.3. It is recommended to use Hadoop 2.7.3 or later, it should work with Hadoop 3.x. Please create an issue if you find any compatibility issues.
- Python version >= 3.8. It has been tested GVFS works well with Python 3.8 and Python 3.9. Your Python version should be at least higher than Python 3.8.
Attention: If you are using macOS or Windows operating system, you need to follow the steps in the
Hadoop official building documentation(Need match your Hadoop version)
to recompile the native libraries like libhdfs
and others, and completely replace the files in ${HADOOP_HOME}/lib/native
.
Configuration
Configuration item | Description | Default value | Required | Since version |
---|---|---|---|---|
server_uri | The Gravitino server uri, e.g. http://localhost:8090 . | (none) | Yes | 0.6.0 |
metalake_name | The metalake name which the fileset belongs to. | (none) | Yes | 0.6.0 |
cache_size | The cache capacity of the Gravitino Virtual File System. | 20 | No | 0.6.0 |
cache_expired_time | The value of time that the cache expires after accessing in the Gravitino Virtual File System. The value is in seconds . | 3600 | No | 0.6.0 |
auth_type | The auth type to initialize the Gravitino client to use with the Gravitino Virtual File System. Currently only supports simple auth types. | simple | No | 0.6.0 |
You can configure these properties when obtaining the Gravitino Virtual FileSystem
in Python like this:
from gravitino import gvfs
options = {
"cache_size": 20,
"cache_expired_time": 3600,
"auth_type": "simple"
}
fs = gvfs.GravitinoVirtualFileSystem(server_uri="http://localhost:8090", metalake_name="test_metalake", options=options)
Usage examples
-
Make sure to obtain the Gravitino library. You can get it by pip:
pip install apache-gravitino
-
Configuring the Hadoop environment. You should ensure that the Python client has Kerberos authentication information and configure Hadoop environments in the system environment:
# kinit kerberos
kinit -kt /tmp/xxx.keytab xxx@HADOOP.COM
# Or you can configure kerberos information in the Hadoop `core-site.xml` file
<property>
<name>hadoop.security.authentication</name>
<value>kerberos</value>
</property>
<property>
<name>hadoop.client.kerberos.principal</name>
<value>xxx@HADOOP.COM</value>
</property>
<property>
<name>hadoop.client.keytab.file</name>
<value>/tmp/xxx.keytab</value>
</property>
# Configure Hadoop env in Linux
export HADOOP_HOME=${YOUR_HADOOP_PATH}
export HADOOP_CONF_DIR=${YOUR_HADOOP_PATH}/etc/hadoop
export CLASSPATH=`$HADOOP_HOME/bin/hdfs classpath --glob`
Via fsspec-style interface
You can use the fsspec-style interface to perform operations on the fileset files.
For example:
from gravitino import gvfs
# init the gvfs
fs = gvfs.GravitinoVirtualFileSystem(server_uri="http://localhost:8090", metalake_name="test_metalake")
# list file infos under the fileset
fs.ls(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir")
# get file info under the fileset
fs.info(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir/test.parquet")
# check a file or a diretory whether exists
fs.exists(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir")
# write something into a file
with fs.open(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir/test.txt", mode="wb") as output_stream:
output_stream.write(b"hello world")
# append something into a file
with fs.open(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir/test.txt", mode="ab") as append_stream:
append_stream.write(b"hello world")
# read something from a file
with fs.open(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir/test.txt", mode="rb") as input_stream:
input_stream.read()
# copy a file
fs.cp_file(path1="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir/test.txt",
path2="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir/test-1.txt")
# delete a file
fs.rm_file(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/ttt/test-1.txt")
# two methods to create a directory
fs.makedirs(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir_2")
fs.mkdir(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir_3")
# delete a file or a directory recursively
fs.rm(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir_2", recursive=True)
# delete a directory
fs.rmdir(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir_2")
# move a file or a directory
fs.mv(path1="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test-1.txt",
path2="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir/test-2.txt")
# get the content of a file
fs.cat_file(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test-1.txt")
# copy a remote file to local
fs.get_file(rpath="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test-1.txt",
lpath="/tmp/local-file-1.txt")
Integrating with Third-party Python libraries
You can also perform operations on the files or directories managed by fileset integrating with some Third-party Python libraries which support fsspec compatible filesystems.
For example:
- Integrating with Pandas(2.0.3).
from gravitino import gvfs
import pandas as pd
data = pd.DataFrame({'Name': ['A', 'B', 'C', 'D'], 'ID': [20, 21, 19, 18]})
storage_options = {'server_uri': 'http://localhost:8090', 'metalake_name': 'test_metalake'}
# save data to a parquet file under the fileset
data.to_parquet('gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test.parquet', storage_options=storage_options)
# read data from a parquet file under the fileset
ds = pd.read_parquet(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test.parquet",
storage_options=storage_options)
print(ds)
# save data to a csv file under the fileset
data.to_csv('gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test.csv', storage_options=storage_options)
# save data from a csv file under the fileset
df = pd.read_csv('gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test.csv', storage_options=storage_options)
print(df)
- Integrating with PyArrow(15.0.2).
from gravitino import gvfs
import pyarrow.dataset as dt
import pyarrow.parquet as pq
fs = gvfs.GravitinoVirtualFileSystem(
server_uri="http://localhost:8090", metalake_name="test_metalake"
)
# read a parquet file as arrow dataset
arrow_dataset = dt.dataset("gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test.parquet", filesystem=fs)
# read a parquet file as arrow parquet table
arrow_table = pq.read_table("gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test.parquet", filesystem=fs)
- Integrating with Ray(2.10.0).
from gravitino import gvfs
import ray
fs = gvfs.GravitinoVirtualFileSystem(
server_uri="http://localhost:8090", metalake_name="test_metalake"
)
# read a parquet file as ray dataset
ds = ray.data.read_parquet("gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test.parquet",fs)
- Integrating with LlamaIndex(0.10.40).
from gravitino import gvfs
from llama_index.core import SimpleDirectoryReader
fs = gvfs.GravitinoVirtualFileSystem(server_uri=server_uri, metalake_name=metalake_name)
# read all document files like csv files under the fileset sub dir
reader = SimpleDirectoryReader(
input_dir='fileset/fileset_catalog/tmp/tmp_fileset/sub_dir',
fs=fs,
recursive=True, # recursively searches all subdirectories
)
documents = reader.load_data()
print(documents)
Authentication
Currently, Gravitino Virtual File System in Python only supports one kind of authentication types to access Gravitino server: simple
.
The type of simple
is the default authentication type in Gravitino Virtual File System in Python.
How to use authentication
Using simple
authentication
First, make sure that your Gravitino server is also configured to use the simple
authentication mode.
Then, you can configure the authentication like this:
from gravitino import gvfs
options = {"auth_type": "simple"}
fs = gvfs.GravitinoVirtualFileSystem(server_uri="http://localhost:8090", metalake_name="test_metalake", options=options)
print(fs.ls("gvfs://fileset/fileset_catlaog/tmp/test_fileset"))